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Online courses for high school students promise the opportunity to bring critical education to youth most

at need, bridging gaps which may exist in brick-and-mortar institutions. In this work, we investigate a

hybrid Massive Open Online Course for high schoolers which includes an in-person coaching component.

We address the efficacy of these courses and the contribution of in-person coaching. We first analyze fea-

tures of student behavior and their effect on post-test performance and then propose a novel probabilistic

model for inferring student success on an AP exam post-test. Our proposed model exploits relationships

between students to collectively infer student success. When these relationships are not directly observed,

we formulate latent constructs to capture social dynamics of learning. By collectively inferring student

success as a function of both unobserved individual characteristics and relational dynamics, we improve

predictive performance by up to 6.8% over an SVM model with only observable features. We propose this

general socio-behavioral modeling framework as a flexible approach for including unobserved aspects of

learning in meaningful ways, in order to better understand and infer student success.

Keywords: latent-variable modeling, collective inference, probabilistic modeling, socio-behavioral mod-

eling, high school, MOOC

1. INTRODUCTION

Online courses have become a popular and powerful mode of instruction, enabling access around

the world to high-quality education. The deployment of massive open online courses (MOOCs)

has primarily targeted college students and adult learners. Now open online education is being

deployed to high schools, introducing students to vast amounts of content, and new methods

of learning. Even as the popularity of high-school MOOCs increases, their efficacy is debated

(Bock and O’Dea, 2013). The subject of this work is an assessment of a single computer science

high-school MOOC, as a case study of the applicability of MOOC platforms for high-school

students.

To understand the applicability of the MOOC model to high schoolers, we analyze student

behavior in a year-long high-school MOOC on Advanced Placement (AP) Computer Science.

This course is distinguished from traditional college-level MOOCs in several ways. First, it is a

year-long course, while college MOOCs average 8-10 weeks in duration. This provides ample

opportunity to observe student interactions for an extended period of time. Secondly, while tra-

ditional MOOCs have no physical student-instructor interaction, the high-school MOOC that we

consider incorporates instructor intervention in the form of coaching and online forum instructor
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responses. Evaluating the effectiveness of this hybrid model allows us to investigate the effect

of human instruction on high-school students, a group which may particularly benefit from su-

pervision. Furthermore, we advance our analysis by introducing a collective socio-behavioral

model of student performance.

We introduce a post-test as a comprehensive assessment occurring after the termination of

the course. A valid post-test should assess students’ knowledge on critical course concepts,

such that students’ course mastery is reflected in their post-test scores. We treat the Advanced

Placement (AP) exam as a post-test and consider students’ performance on this test as being

indicative of long-term learning. Previous MOOC research evaluates students on course perfor-

mance (Kennedy et al., 2015). While course performance can be a good metric for evaluating

student learning in the short term, post-test performance is a more informative metric for evalu-

ating long-term mastery. Throughout this paper the post-test score is the score a student achieves

on the Computer Science AP exam.

Additionally, a post-test is valuable as it provides us with a single metric of student success.

Though this should not be interpreted as the only metric, it is useful as an approximation of

students’ course knowledge. Here, we use the post-test score to evaluate the effectiveness of

course content. We also build two predictive models to infer students’ post-test scores. In the

first model, we use recursive feature analysis to discover the aspects of student behavior most

indicative of success. We then build a model which can use these informative features as well as

latent student interactions and classroom strength to collectively predict post-test performance.

Another highlight of this model is that it allows us to inspect potential discoveries of student

collaborations. We propose this model as a general template for educational data mining settings

with social interactions and where latent variables can capture unobserved student behavior.

In online environments, social behavior has been shown to affect attrition (Rosé et al., 2014),

support knowledge construction (Kellogg et al., 2014; Aviv et al., 2003), and improve course en-

joyment (Li et al., 2014). Forum interactions have proven invaluable as a source of information

on how students form online relationships, share knowledge, and engage interactively. Criti-

cally, forum engagement has shown to be indicative of course success (Tomkins et al., 2016).

However, not all interactions are automatically beneficial to student success and more work

is necessary to understand how interactions influence course performance, especially in high

school settings.

Here, we model two forms of interactions. First, we model students working together on

the same assignment. This decision was made in consultation with course instructors who have

witnessed students submitting the same assignment code. Second, we use classroom member-

ship in inferring student’s overall strength in the course, where we consider strong students to

be those who perform well on the AP exam. Thus, we model the phenomenon that students with

the same instructor might have similar knowledge and exhibit similar course success.

This paper extends Tomkins et al. (2016) and also introduces several novel contributions.

In Tomkins et al., we identified two course success measures: course performance scores and

post-test performance scores. We used these success measures to differentiate strong and weak

students, to understand which parts of the course are most indicative of success, and to build

a predictive model. We also assessed the effect of two important elements of this high-school

MOOC: discussion forums and in-person instruction (which we refer to as coaching) on student

performance.

Here, we significantly extend this prior work. In addition to the model introduced in our

earlier work, we introduce a collective socio-behavioral model, SOCIO-BEHAVIORAL with sev-
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eral advantages for this domain: it can use student interactions to jointly infer success; it can

discover useful latent quantities, such as classroom strength and student collaborations; and it

encodes complex course dynamics with intuitive logical rules. By discovering latent student

and classroom strength, as well as co-working dynamics, we are able to discover unobserved

aspects of student behavior while achieving performance superior to our previous model. We

propose this framework as a general approach for predicting aspects of student learning in the

presence of meaningful latent constructs such as collaboration dynamics. Here, we demonstrate

its effectiveness by modeling a potential indicator of collaboration, as well as classroom and

student strength.

This paper is organized as follows. In Section 2, we provide an overview of related work.

In the following section, Section 3, we discuss the data used in this analysis. In Sections 4-6 ,

we investigate the relationship between various course features and student performance. This

analysis prompts the discovery of unexpected student types, which we introduce in Section 7. To

utilize these relationships between students’ course behavior and their post-test performance, we

build a set of predictive features, which are shown in Section 8. We then develop two predictive

models, which we introduce in Section 9. We present an empirical evaluation in Section 10,

which we discuss in Section 11, before concluding in Section 12.

2. RELATED WORK

We propose a collective socio-behavioral model for post-test performance prediction in a high-

school MOOC. Our work is related to several categories of previous work, including perfor-

mance prediction in MOOCs, latent factors in student success, peer interactions, and gaming

behavior. We discuss each of these in turn below. First, we outline work on predicting perfor-

mance in MOOC settings. Next, we discuss related work on high school MOOCs. Next, we

provide a brief survey of connections between latent factors of student learning and how these

relate to various measures of student success. As a critical part of our model is collaborative be-

havior and student interactions, we discuss related work on peer interactions. Finally, we briefly

discuss gaming behavior in MOOCs.

2.1. PREDICTING PERFORMANCE

There are a variety of approaches for predicting student success in MOOCs. An overview of

these approaches is provided in Gardner and Brooks (2018). While there is an abundance of

work on predicting completion and dropout, less work has focused on academic performance.

Li et al. (2017) predict student achievement from click-stream data. Kennedy et al. (2015)

incorporate a variety of student activity features to predict final exam performance.

In our work, we make use of topics discussed in the student forum to predict success. Topic

models have been useful in related work as well. Recently, Motz et al. (2018) demonstrate that

topics constructed from course titles can reveal latent student interests. Klüsener and Forten-

bacher (2015) build profiles of successfull and risky students using features from participation

in student forums.

In this work, we predict performance on the AP exam, which differentiates our work in sev-

eral ways. As this exam is administered by a third party, doing well on it requires that students

have mastered relevant concepts, rather than the particularities of the course learning environ-

ment. Additionally, this is a high-stakes test which can directly influence students’ preparation
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for and admittance to college. MOOCs offer the potential to improve access to AP courses and

their ability to adequately prepare students is an important question in its own right. To the

best of our knowledge, we are the first authors to both analyze the success of an AP-preparation

MOOC and to build a predictive model for this unique setting.

2.2. HIGH-SCHOOL MOOCS

There is limited work on analyzing student behavior in high-school MOOCs. Kurhila and Vi-

havainen (2015) analyze Finnish high school students’ behavior in a computer science MOOC

to understand whether MOOCs can be used to supplement traditional classroom education. Na-

jafi et al. (2014) perform a study on 29 participating students by splitting them into two groups:

one group participating only in the MOOC and another group using a blended-MOOC that has

some instructor interactions in addition to the MOOC. They report that students in the blended

group showed more persistence in the course, but there was no significant differences between

the groups’ performance in a post-test.

2.3. LATENT STUDENT FACTORS AND LEARNING

Another aspect of our work is modeling latent factors of student success. The influence of latent

psychological factors (e.g., motivation, conscientiousness) on learning outcomes has been ex-

plored in several settings. For example, motivation has been related to student performance and

learning (Mega et al., 2014). Additionally, many have investigated latent factors of engagement

in the context of student enrollment and dropout.

Kizilcec et al. (2013), Anderson et al. (2014), and Ramesh et al. (2014) have developed

models for understanding student engagement in online courses. Others have looked at more

fine-grained psychological states. Sun et al. (2018) propose a model relating the psychological

factors of autonomy, competence, and relatedness to intrinsic motivation. Furthermore, they

demonstrate a strong relationship between psychological engagement and behavioral engage-

ment.

Loya et al. (2015) investigate the relationship between conscientiousness and course comple-

tion in a computer programming MOOC. They find that behavioral traces indicative of consci-

entiousness are positively correlated with course completion. This work suggests the potential

benefits of incorporating conscientiousness into predictive models of student outcomes.

There has been some work on relating psychological factors to evaluation performance in

MOOCs. Hanzaki and Epp (2018) analyze the effect of personality on MOOC grades. They

find that including features related to personality can improve the ability of machine learning

algorithms to predict course performance. However, Chen et al. (2016) found that personality

was correlated with some features of course performance. In line with Loya et al., one of the

personality traits with consistent correlations to course behavior was conscientiousness.

We propose a model which includes latent student and section strength. Student strength is a

coarse variable which can encapsulate several related psychological concepts, such as motivation

and conscientiousness. Here, we demonstrate that even the inclusion of this coarse variable can

improve predictions of final exam performance. However, our model is quite flexible, and allows

for the inclusion of additional constructs, such as conscientiousness, as relevant data becomes

available.

45 Journal of Educational Data Mining, Volume 11, No 3, 2019



2.4. STUDENT INTERACTIONS AND LEARNING

One component of our work is the inclusion of student interactions in a predictive model of

course success. Understanding the social processes of student learning is an active area of

research (Anderson, 2003). Recently, Gitinabard et al. (2018) demonstrated that social graph

features could improve prediction of MOOC dropout. Andrews-Todd et al. (2018) propose

a system for identifying collaboration patterns from course logs, finding four unique groups

of collaborators. Importantly, they find that the collaboration profiles correlate with course

success. In online courses, student forums are essential in lending insight to how peer behavior

impacts motivation, engagement, and other performance metrics (Rosé et al., 2014; Kellogg

et al., 2014; Aviv et al., 2003; Huang et al., 2014). Other work has inspected the impacts of

physical colocation (Li et al., 2014; Blom et al., 2013) and social search (Su et al., 2016) on

learning, the meaningfulness of social networks outside of course forums (Veletsianos et al.,

2015), and ritual formation on forums (Longstaff, 2017). Simon et al. (2013) analyze the impact

of peer instruction on student learning.

As social interactions are found to have large positive impacts on student experiences, much

work has focused on building tools to improve collaborative learning. In their work, Rosé et

al. (2008; 2011; 2015) have proposed supportive technologies to enhance forum participation

and course collaboration and to automatically analyze both online networks and forum corpora.

Additionally, some studies have focused on the effects of peer interactions on learning. Wang

et al. (2015) investigated the relationships between types of MOOC forum behavior and learn-

ing and found interactions to be indicative of learning gains in some cases. For example, the

extent to which a student actively recounts course material on the forum correlates to post-test

performance. Wen et al. (2015) analyzed various team aspects in an online course to discover

which correlated with performance. Their work demonstrates the potential positive benefits of

learning teams, especially when team leaders are active in team building.

We incorporate peer interactions in two ways. First, we model latent section or classroom

strength. This allows us to better predict student performance, especially when data is scarce,

as we observe some relationship between certain sections and overall post-test performance.

Secondly, we infer working-together ties between students. This allows us to explicitly model

how peer interactions might influence post-test performance.

Recent work has focused on designing productive team compositions. Staubitz and Meinel

(2019) show that mindfully designing teams can reduce MOOC dropout and propose several

criteria to assess and design teams. Er et al. (2019) propose a method for forming productive

groups by predicting whether students will post in a given group discussion. We hope to incor-

porate such insights in our setting, to not only understand but also arrive at successful student

collaborations.

2.5. GAMING BEHAVIOR

Particularly relevant to our findings is the impact of gaming the system on long-term learn-

ing. Baker et al. (2004) investigate the effect of students gaming an intelligent tutor system on

post-test performance. In the high-school MOOC setting, we observe similar behavior in some

students achieving high course performance, but low post-test performance. We identify plau-

sible ways in which these students might be collaborating in unhealthy ways to achieve high

course performance and present analysis that is potentially useful for MOOC designers to pre-

vent this behavior. Additionally, we model how interactions might impact student strength and
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performance.

In our work, we focus on empirically analyzing different elements of a high-school MOOC

that contribute to student learning in an online setting. We use post-test scores to capture student

learning in the course and examine the interaction of different modes of course participation

with post-test performance. In our work, we infer unobserved offline collaboration through

online interactions. These inferred offline interactions are then used in modeling the influence

of collaboration on performance. In addition, we model latent student strength. Thus, we can

model how interactions between students of varying strength levels can impact performance.

Our analysis reveals course design insights that may be helpful to MOOC educators.

3. DATA

The data used in our study is from a two-semester high-school Computer Science MOOC, of-

fered by a for-profit education company. The course prepares students for College Board’s

Advanced Placement Computer Science A exam and is equivalent to a semester-long college

introductory course on computer science. In this work, we consider data from the 2014-2015

school year for which 5692 students were enrolled.

The course is structured by terms, units, and lessons. Lessons provide instruction on a single

topic and consist of video lectures and activities. The lessons progress in difficulty beginning

with printing output in Java and ending with designing algorithms. Each lesson is accompanied

with activities. These activities are not graded; instead students receive credit for attempting

them. Students take assessments in three forms: assignments, quizzes, and exams. Assignments

are generally released every other week, while on alternating weeks a quiz or an exam is re-

leased. However, this frequency can vary, for example students might be given an extra week to

complete a particularly difficult assignment.

At the end of the year, students take an Advanced Placement (AP) exam. Depending on

the criterion of the institution, students can use their AP exam performance as a substitution

for a single introductory college course. Simultaneously, students might earn credit from their

high school for completing an AP course. The AP exam score ranges from 1 to 5, where a 3.0

is widely considered a passing score. In all, we have data for 1610 students who take the AP

exam. This number is a lower limit on the total number of students who may have taken the

course and the AP. The course provides a forum service for students, which is staffed with paid

course instructors. Approximately 30% of all students who created course accounts also created

forum accounts, 1728 students in all.

This course is unique in that it provides a coach service which high schools can purchase.

This option requires that the school appoint a coach, who is responsible for overseeing the stu-

dents at their school. The coach is provided with additional offline resources and has access to a

forum exclusive to coaches and course instructors. The average classroom size is approximately

9 students with a standard deviation of approximately 12 students. The largest classroom size

coached by a single coach is 72, while some coaches supervise a single student. Of all students

who have enrolled in the course, approximately 23% (1290) are coached and 77% (4402) are

independent. From here on we refer to the students enrolled with a coach as coached students.

We summarize the class statistics in Figure 1 below. The majority of coached students sign

up for the student forum, and many persist with the course to take the final AP exam at the end

of the year.

47 Journal of Educational Data Mining, Volume 11, No 3, 2019



All On Forum Took AP Forum and AP
0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r 
o
f 
S
tu

d
e
n
ts

Coached

Independent

Figure 1: Course participation behaviors for coached and independent students. Participation

behavior varies between coached and independent students.

4. EMPIRICALLY CHARACTERIZING SUCCESS OF A

HIGH-SCHOOL MOOC

In this section, we use post-test performance and course performance to study the effectiveness

of MOOCs for high school students. Using an empirical analysis, we provide insights on how to

adapt high-school MOOCs to benefit different groups of students. To investigate this question,

we focus on the subset of students for whom we have post-test data. To evaluate student success

in the course, we identify three measures of course participation in MOOCs that are relevant to

the high school population: overall score, course completion, and post-test score.

Overall Score: The overall score captures the combined score across course assignments,

quizzes, exams, and activities, each of which contributes to the final score with some weight.

We maintain the same weighting as used in the course: exams are weighted most heavily and

activities the least. In this grading, we only consider the final score for a given assessment and

not the number of attempts taken to complete the assessment.

Overall Score = .3*(Assignment Score + Quiz Score) + .6*Exam Score + .1*Activity Score.

Course Completion: Course completion measures the total number of course activities and

assessments completed by the student.

Course Completion =
Total Activities and Assessments Attempted

Total Number of Activities and Assessments

Post-Test Score: This score captures student scores in the post-test that is conducted two

weeks after the end of the course. The score ranges from 1 to 5. This is a scale score based on

the composite scoring of multiple-choice and free-response questions. This score captures the

advance placement (AP) score; hence we also refer to it as the AP score.
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Figure 2: Correlation between average course scores and AP scores, including a regression line

summarizing the trend. The dot sizes are proportional to the number of students achieving the

overall score.

To evaluate the effectiveness of the high-school MOOC on student performance, we first

examine the relationship between course completion and course performance. We hypothesize

that as students complete a higher percentage of the course, they should do better in the course

assessments leading to higher course performance scores and post-test scores. Examining the

correlation of course completion to post-test performance, we find that they are positively corre-

lated. This suggests that the course indeed helps students in achieving good performance in the

assessments. However, we find that of the students that achieve an overall score of 90 or greater,

only 70% pass the post-test. Similarly, of the students who complete 90% of the course, only

63% pass the post-test. These initial observations indicate the need to perform a more detailed

study in order to understand the different student populations in the course.

Next, we examine the relationship between overall score and post-test score, captured in

Figure 2. From this plot, we see a positive relationship between course performance and post-

test score. To illuminate this we include a line fit to show the relationship between overall score

and AP score, Spearman score, r(1608) = 0.20, p < .001. Notably, we observe that the average

post-test score of the students who achieve a 90% or higher in the course is above a 3.0, and well

above a passing score.

The relationship shown in Figure 2 may be distorted by students who only lightly partici-

pate in the course. For example, students with high prior knowledge may use the course as a

reference/review resource rather than as a primary learning resource. To inspect the relationship

between overall course score and AP score for students who are more likely to be using the

course as a primary resource, we plot only those students who completed more than 30% of the

course in Figure 3. In this setting, we see an even stronger relationship between overall course

score and AP score, as illustrated by the steeper line, Spearman score, r(865) = 0.30, p < .001.

In both Figure 2 and Figure 3 we see a dip in AP exam performance in the region of 60%

to 80%, overall course scores. There may be several reasons for this. One is that the course
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Figure 3: Correlation between average course scores and AP scores, only for those students who

complete at least 30% of the course. Again, we include a regression line summarizing the trend

and the dot sizes are proportional to the number of students achieving the overall score.

score is not the only indicator of success, as we discuss in the paper, forum participation and

participating in ungraded activities are also predictive of success and are not included in the

overall course score. It might be that in the region of 60% to 80%, it is possible for students

to achieve passing scores on course assessments without mastering the material to an extent

sufficient to pass the post-test. This is in contrast to the 90% region, where students who achieve

a high score generally pass the post-test. To address this, the course might consider expanding

the overall course score to cover more material.

Students regularly complete three kinds of assessments: assignments, quizzes, and exams.

Assignments are programming exercises, testing students’ coding abilities. Programming as-

signments are submitted online through an interface capable of compiling programs and dis-

playing error messages. Quizzes are multiple-choice assessments on course material, with an

emphasis on recently covered topics. Exams have a similar format to quizzes but are slightly

longer. Both quizzes and exams are timed, and students cannot change their answers once they

submit them. In all, there are 15 assignments, 8 quizzes and 6 exams in the course. We refer to

them as A1:15, Q1:8, and E1:6, in the discussion below.

Figures 4, 5, and 6 present average student assignment, quiz, and exam scores for students

who passed/failed the post-test, respectively. We find that students who pass the post-test do

better on assessments. We also observe that the scores across all assessments show a decreasing

trend as the course progresses. This signals that the assessments get harder for both groups of

students as the course progresses. Another important observation is the increase in scores for

both groups at assignment 8, quiz 5, and exam 4; these assessments are at the start of the second

term in the course, indicating that students may have higher motivation at the start of a term.

Additionally, some assessments show a greater difference between the two groups of stu-

dents, and performance on these assessments are more informative of student learning. In Figure

6, we observe that for both passed and failed students, we see the greatest dip in performance

50 Journal of Educational Data Mining, Volume 11, No 3, 2019



A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

0

20

40

60

80

100

A
v
e
ra

g
e
 A

ss
ig

n
m

e
n
t 

S
co

re

Passed

Failed

Figure 4: Average assignment scores of passed and failed students. Error bars indicate standard

error.
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Figure 5: Average quiz scores of passed and failed students. Error bars indicate standard error.
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Figure 6: Average exam scores of passed and failed students. Error bars indicate standard error.

in the final exam. As the final exam is the most comprehensive exam, and possibly most related

to the post-test, analyzing why students do so poorly on this exam is a worthwhile direction of

study in its own right.

Another important dimension is considering assignment completion rate of these two groups

of students. In Figure 7, we examine the relationship between attempting assignments and

course performance and find that students passing the post-test also attempt more assignments.

This suggests that the high scores of these students are not only the product of strong prior

knowledge but are also the result of learning from the course.

5. FORUM PARTICIPATION AND POST-TEST PERFORMANCE

In this section, we analyze forum participation of students and examine its effect on course

success. To do so, we consider the following questions:

• Does participation in forums impact post-test performance and learning?

• What are the key differences between participation styles of students who pass the post-

test and students who do not?

The forum is a key feature of this MOOC. Unlike many MOOCs, it is fully staffed by trained

instructors who respond to all questions within 24 hours. These instructors are independent of

the coaches. Students can interact with coaches in a variety of ways ranging from in-person in-

teractions to email. On the forum, they interact with other students and with the paid instructors

who are experts on the course content.

We then look at the average score of students who use the forum compared to the average

score of students who do not use the forum. Students who use the forum have a statistically

higher post-test performance score of 2.77, whereas students who do not use the forum obtain

a score of 2.34, t(1608) = −5.32, p < .001. It is not clear if the forum impacts learning, or if

instead, students with a high desire to learn are more likely to use the forum.
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Figure 7: Shows percent of students who attempt assignments. Students who pass are more likely

to attempt assignments than students who fail.

To accurately evaluate forum participation of the passing/failing students, we analyze dif-

ferent types of forum participation. Forum participation is comprised of various student inter-

actions: asking questions, answering other student questions, viewing posts, and contributing

to conversation threads. The average length of a post is 203 words. The average length of a

thread is 2.3. Table 1 compares students who pass the post-test to student who do not across the

various forum participation types. The different types of forum participation types are referred

to as Questions, Answers, Post Views, and Contributions. We also consider the number of days

that a student was logged into the forum, which is denoted by Days Online.

On average, students who pass the post-test make more contributions than students who fail.

They also answer more questions. Both groups seem to spend roughly the same amount of time

online, to view the same number of posts, and to ask the same number of questions. What most

distinguishes a student who passes, from one who fails is whether they are answering questions

and contributing to conversations.

Table 1: Forum participation statistics. The average forum participation tends to be significantly

more for students that pass the post-test. Behaviors for which there was a significance difference

(p < .05) between the groups are highlighted in bold.

Forum Behavior Failed Mean Passed Mean Failed Median Passed Median

Questions 2.95 3.75 0 .00 1.00

Answers 1.32 4.32 0.00 0.00

Post Views 147.54 140.92 73.00 62.00

Contributions 8.66 15.60 1.00 2.00

Days Online 19.46 21.50 11.00 13.00
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This analysis further supports the importance of forums to MOOCs. Answering questions

and contributing to conversations are two behaviors indicative of strong post-test performance.

However, it is unclear if answering questions helps students learn, or if students with high prior

knowledge are more likely to answer questions and contribute to conversations. We hope that

MOOC designers can use this information to create appropriate intervention and incentive strate-

gies for students.

6. COACHING

In this section, we evaluate the effect of coaching on student learning. We compare coached

students to independent students using their participation in course assessments and forums. We

further analyze the subset of students who have only one coach in order to isolate the effect of

coaching from other classroom effects.

6.1. COURSE BEHAVIOR

We inspect the average assessment scores of coached and independent students in Figures 8-10.

Observing scores across assignments, quizzes, and exams in Figures 8, 9, and 10, respectively,

we find that coached students perform better than independent students across all assessments.

Such differentially high performance in the course should indicate higher performance in

the AP exam for coached students. However, this is not reflected in the post-test scores. The

average post-test score for coached students is 2.43, while it is 2.59 for independent students,

where the differences between these average scores is significant, t(1608) = 2.01, p < .05.
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Figure 8: Average assignment scores of coached and independent students.
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Figure 9: Average quiz scores of coached and independent students.
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Figure 10: Average exam scores of coached and independent students.
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Table 2: Forum participation statistics for coached and independent students. Coached students

view more posts and ask more questions. The behavior for which there was a significant differ-

ence between the groups are highlighted in bold (p < .05).

Forum Behavior Coached Mean Independent Mean Global Mean

Questions 2.81 1.90 2.32

Answers 1.45 1.72 1.59

Post Views 145.49 81.50 111.11

Contributions 8.10 7.33 7.69

Days Online 20.64 12.55 16.29

6.2. FORUM PARTICIPATION OF COACHED AND INDEPENDENT STUDENTS

In order to understand this difference in scores, we analyze forum participation of coached

and independent students. This analysis reveals a significant difference in forum participation

between coached and independent students. Table 2 gives the comparison between coached and

independent students in forum participation. On average, coached students ask more questions

and answer fewer questions on the forums when compared to independent students. Coached

students exhibit more passive behavior by predominantly viewing posts rather than writing posts

compared to independent students. This can be particularly dangerous if the posts which are

viewed contain assignment code.

In Table 3, we compare coached students who pass to coached students who fail and see the

same differences as those observed between all students who pass, and all students who fail.

Students who pass are more likely to answer questions and contribute to conversations.

6.3. COACHES WITH ONLY ONE STUDENT

To examine the effect of coaching class size on coached students’ post-test performance, we

examine coached students with no classmates, that is, when there are coaches with whom only

one student registers1. Comparing average post-test scores of coached students who are singly

advised by their coaches (classroom size of one) with independent students, we find that the

average post-test score for the coached students is 3.6, while it is 3.2 for independent students.

Table 3: Forum participation statistics for coached students. The differences in forum behavior

between coached students who pass and who fail follow the same trends in forum behavior ex-

hibited by the general population, and shown in Section 5. The behavioral features for which

there was a significant difference between the groups are highlighted in bold (p < .05).

Forum Behavior Passed Mean Coached Failed Mean Coached

Questions 3.97 2.87

Answers 3.04 0.56

Post Views 141.56 164.14

Contributions 14.19 5.93

Days Online 22.71 21.53

1Other students might register independently at the school and pursuing the course on their own have no record

of being coached.
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Figure 12: Number of students in each group. The majority of unexpected low learners are

coached, while the majority of unexpected high learners are independent.

• Unexpected low learners: These students obtain high overall scores, but low post test

scores.

• Unexpected high learners: These students obtain high post test scores, but low overall

scores.

Among these, the unexpected low learners and unexpected high learners deviate from the rest of

the students. To analyze these two groups, we delve deeper into other aspects of the course such

as forum participation and coaching.

7.1. UNEXPECTED LOW LEARNERS

Unexpected low learners are those students who perform well on the course assessments (with

an overall score of over 60%) but who do not earn a passing post-test score. We hypothesize

that this might be due to their not retaining information from the course, or not arriving at high

overall course scores on their own. To understand their low post-test performance, we examine

their forum behavior and coaching environment.

As can be seen in Figure 12, approximately 91% of unexpected low learners are coached

students. Most of these students are part of large classrooms coached by the same coach. While

it is unclear why the majority of this group would be coached students, one possible explana-

tion is that classroom dynamics influence learning in potentially negative ways. For example,

working together might result in unforeseen negative consequences. If students who do not fully

understand the material achieve high course scores due to the help of their peers this help may

not prepare them to pass the post-test.

Further, analyzing forum performance, we find that approximately 76% of unexpected low

learners use the forum. Of those who use the forum, 91% are coached. Table 4 gives the forum

participation of coached and independent unexpected low learners. The forum participation of

these students has a strong similarity to failing students in Table 1, participating passively in
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Table 4: Forum participation statistics. Forum behaviors for which there is a significant differ-

ence (p < .05) between groups are highlighted in bold.

Forum Behavior Coached Mean Independent Mean

Questions 3.46 9.19

Answers 0.54 15.31

Post views 195.52 293.69

Contributions 7.11 67.31

Days Online 25.59 35.19

the course by viewing forum posts and contributing to fewer answers. The coached students are

less active than the independent students on the forum in every way, even in post views. While

it has been posited before that active forum participation is indicative of learning and high AP

exam performance, this may not be the case in all groups. For example, the small number of

independent students may be using the forum for social, rather than learning purposes.

7.2. UNEXPECTED HIGH LEARNERS

Unexpected high learners earn an overall course score of less than 60% but still pass the AP

exam. Approximately 86% (357 out of 409) of unexpected high leaners are independent, and

approximately 80% of the unexpected high learners (323 out of 409) are not on the forums,

so descriptive statistics of forum participation are omitted. That this group can do so well on

the post test, without either a high amount of course or forum participation strongly suggests

that either these students have prior knowledge in computer science or that they are not being

primarily exposed to computer science through this course but are instead using it to supplement

another mode of instruction. A pre-test of students’ prior computer science knowledge would

provide further clarity.

8. MODELING STUDENT BEHAVIOR

In this section, we build models of student behavior which can inform predictions of their per-

formance. For example, we saw that students’ post-test performance is associated with their

course and forum behavior in Section 4 and Section 5. Here, we investigate which aspects of

student behavior are most indicative of post-test performance. By discovering the relative rank

of the student model features, we draw insights about student behavior relevant to learning, and

to course design.

8.1. STUDENT MODEL FEATURES

We group the course features from student interactions into four broad categories: 1) course

behavior, 2) forum behavior, 3) coaching environment, and 4) topic analysis of forum posts. We

extract features from student course behavior and forum behavior; two other feature categories

are described below.
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Table 5: Coaching related features

Feature Explanation

Coached Boolean feature capturing whether a student is

coached or independent

Coach Views # posts viewed by the coach

Coach Questions # questions posted by the coach

Coach Answers # answers posted by the coach

Coach Contributions # contributions in the forum

8.1.1. Coaching Environment

Here, rather than modeling student features, we model features related to coaches. Coaches are

provided a separate discussion forum, apart from the student forum, where they can interact with

other coaches and instructors of the course. We define features that may capture coaches’ prior

knowledge and their involvement in guiding students. Table 5 gives the list of coaching related

features derived from the discussion forum for coaches.

8.1.2. Posts Topic Distribution

In order to better understand online forum behavior, we make use of topic models. Topic models

are popular approaches to using the distribution of words appearing across posts to identify

common themes. For example, in an online course, one might uncover themes of course-related

concepts. Here, we use Latent Dirichlet Allocation (LDA; Blei et al., 2003) implemented in the

Machine Learning for Language Toolkit (MALLET; McCallum, 2002). Before using LDA we

clean the text data by removing stop words, stemming certain words, and removing all common

course words, such as the word code. We use the following parameters for the topic model:

number of topics = 150 and optimize-interval = 100, where the hyper-parameters required by

LDA, α and β, are set to the default values. All discovered topics are included in an initial

feature set which is later reduced using feature elimination as described in the next section. That

is, for a given student we can model the extent to which they posted about a given topic as their

total topic score for each topic across all posts. We choose a large number of initial topics as

those which are uninformative will be lost in the feature elimination stage.

9. PREDICTIVE MODELS

Here we discuss the goal of predicting student post-test performance. To do so, we introduce

two types of predictive models. The first employs the features detailed in Section 8. The next is

able to reason collectively, using relations between students to better infer performance.

In both types of models, we use only the most predictive features. A subset of features

that are predictive of post-test performance was selected using recursive feature elimination in

scikit-learn (Pedregosa et al., 2011). Recursive feature elimination works by training a classifier

which weighs features and then trims all features with the lowest weights; this trimming allowed

us to obtain the best predictions, and to understand which features are most predictive of student

success.
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9.1. STANDARD PREDICTIVE MODELS

We incorporate extracted features in a linear kernel Support Vector Machines (SVM) model,

using the Python package scikit-learn (Pedregosa et al., 2011). Comparing this model with

other machine learning algorithms such as logistic regression, decision trees, and Naive Bayes,

we found the results to be comparable. However, a failing of this model is its inability to reason

collectively about student behavior.

9.2. COLLECTIVE SOCIO-BEHAVIORAL MODELS

In order to model the intricate dependencies between students in this online course we employ a

collective probabilistic approach. An advantage of a collective approach is that while predicting

performance, we can jointly infer the values to descriptive latent variables. For example, here

we model student and classroom section strength as latent variables, in addition to unobserved

collaborations between students. To do so, we use Probabilistic Soft Logic (PSL; Bach et al.,

2017), a probabilistic programming framework2 which allows us to encode student interactions

and their potential effects with intuitive logical rules.

In PSL, domain knowledge is encoded with weighted logical rules. The values to these

weights are learned in a training process, and thus the relative importance of each rule is in-

formed by data. Incorporating multiple rules of varying strengths allows us to fuse multiple

sources of information to varying degrees. These rules can describe complex relationships and,

crucially, capture dependencies not only from observed features to target variables but between

target variables. This expressivity allows us to encode relationships between students. Finally,

PSL provides an intuitive framework for representing latent abstractions and an efficient proce-

dure for inferring their values.

To illustrate PSL in the online course context, consider a rule which says that if two students

exhibit similar course performance and one passes the post-test, the other will be likely to as

well. To express this rule we introduce the predicate SIMILARCOURSEPERFORMANCE, which

takes two students as arguments and which expresses their course performance similarity as a

value between 0 and 1. Additionally, we introduce the predicate PASS, which takes a student

as an argument and whose truth value indicates whether this student passes the post-test. With

these predicates, we define our rule in PSL as follows:

wsim : SIMILARCOURSEPERFORMANCE(Sa, Sb) ∧ PASS(Sa) ⇒ PASS(Sb)

9.2.1. Student strength

Next, we demonstrate how PSL can be used to template a predictive model for post-test perfor-

mance. For each student, Si, we would like to predict if this student will pass or not; that is,

we would like to infer the truth value of PASS(Si). We would also like to assign each student a

strength value, such that strong students are likely to pass. To do so, we introduce TYPE(Si, T ),
where T is either Strong or Weak. To learn the latent strength of each student we use the student

models developed in Section 8. To express that a student’s strengths are related, i.e., a strong

student cannot simultaneously be a weak student, we impose a functional constraint. This con-

straint ensures truth values of all potential types for a given student sum to 1 (in Ruleset 1).

2Open-source software available at: http://psl.linqs.org
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∞ :
∑

t∈Types

STUDENTSTRENGTH(Si, t) = 1

Ruleset 1: Constraint on student strength.

wsvms : SVMPREDICTS(S) ⇒ TYPE(S, Strong)

wsvmw : SVMPREDICTS(S) ⇒ TYPE(S,Weak)

wtj : POSTTOPIC(P, tk) ∧ AUTHOR(S, P ) ⇒ TYPE(S, Strong)

wah : ANSWERS(S, high) ⇒ TYPE(S, Strong)

wal : ANSWERS(S, low) ⇒ TYPE(S,Weak)

wch : CONTRIBUTIONS(S, high) ⇒ TYPE(S, Strong)

wcl : CONTRIBUTIONS(S, low) ⇒ TYPE(S,Weak)

wvh : VIEWS(S, low) ⇒ TYPE(S, Strong)

Ruleset 2: Inferring Student Strength

We make use of the predictions from the model explained in the SVM model to infer stu-

dents’ latent strengths. In the first two rules in Table 2, we learn weights to express the depen-

dence between the SVM predictions and students’ types. We also use the topics of the posts

each student contributes to the student forum. For each topic which is considered by feature se-

lection to be predictive, we learn a weight for the rule which states that mentioning this topic is

indicative of a student being Strong. This is shown with the rule template shown in the third line

of Table 2, where the value of POSTTOPIC(P, tk) is the topic distribution assignment of topic tk
and AUTHOR(Si, P ) is 1 if Si authored post P . Similarly, we would like to express the relation-

ship between forum contributions and student strength. To do so, we introduce the predicates

ANSWERS(Si, A), CONTRIBUTIONS(Si, A) and VIEWS(Si, A), where A can be either low or

high. A variable representing the number of questions a student asks was deemed unimportant

by the RFE procedure. We then express the relationships between these behaviors and strength

with the remaining rules in Ruleset 2.

9.2.2. Section strength

We are also interested in how membership in particular classrooms might impact performance.

To express the strengths of various learning environments, we introduce

SECTIONSTRENGTH(C, T ), where C refers to a class or section ID, and T is either Strong or

Weak. As for students, we constrain sections’ types with the rule in Ruleset 3, which expresses

that a section cannot be simultaneously Strong and Weak.

∞ :
∑

t∈Types

SECTIONSTRENGTH(C, t) = 1

Ruleset 3: Constraint on section strength
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wcah : COACHANSWERS(C, high) ⇒ SECTIONSTRENGTH(C, Strong)

wcao : COACHONLINE(C, low) ⇒ SECTIONSTRENGTH(C,Weak)

wccs : COACHCLASSSIZE(C, low) ⇒ SECTIONSTRENGTH(C, Strong)

Ruleset 4: Inferring Section Strength

To infer section strength, we use features discovered in the RFE procedure. In addition to

the student forum, the course includes a forum where coaches can interact with each other and

with course instructors. To model the behavior of coaches on this forum, we introduce the pred-

icates COACHANSWERS(C,A) and COACHONLINE(C,A), where A can be either low or high.

COACHANSWERS refers to the number of questions a coach answers on the coach forum, and

COACHONLINE refers to the number of days the coach logs into the coach forum. Additionally,

we consider the number of students in a classroom with COACHCLASSSIZE(C,A). The rules

in Ruleset 4 relate coach forum behavior to section strength.

wsecs : SECTIONSTRENGTH(C, Strong) ∧ INSECTION(S,C) ⇒ TYPE(S, Strong)

wcol : SAMESECTION(Si, Sj) ∧ TYPE(Si, T ) ⇒ TYPE(Sj , T )

wcols : INSECTION(Si, C) ∧ INSECTION(Sj , C) ∧ SECTIONSTRENGTH(C, T ) ∧ TYPE(Si, T )

⇒ TYPE(Sj , T )

Ruleset 5: Section Strength and Student Strength

We then use section strength to inform the predictions of students’ strengths. This is shown

in Ruleset 5. This rule expresses that if a student is enrolled in a strong section, they may also be

a strong student. The next rule in this table expresses that students in the same section will have

similar strengths. The final rule restates this but modulates this dynamic by section strength.

For each rule in Ruleset 2, we also have a rule which propagates these student behaviors into

section strengths. These rules express that if a student is predicted to be strong and is enrolled in

a given section, then that section should also be strong. We make this clear with the following

rule template, where an example behavior correlated with strength is answering questions on the

student forum:

BEHAVIOR(S) ∧ BEHAVIORCORRELATED(T ) ∧ INSECTION(S,C) ⇒ SECTIONSTRENGTH(C, T )

Thus, each rule in Ruleset 2 that infers student strength has a version following this template

which instead infers section strength.

9.2.3. Classroom style and student strength

Additionally, we observed that coached and independent students exhibited different behaviors

on the forum. Moreover, these behaviors are differently correlated with success. For exam-

ple, when coached students view a high number of posts, this behavior is associated with low

performance. However, when independent students view a high number of posts, it is corre-

lated with high performance. In order to capture these differences, we introduce two predicates

COACHED(S) and INDEPENDENT(S) where each return binary values according to whether a
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wecx : ASSESSMENTSCORE(S,Ax) ∧ COACHED(S) ⇒ TYPE(S, Strong)

weix : ASSESSMENTSCORE(S,Ax) ∧ INDEPENDENT(S) ⇒ TYPE(S, Strong)

wvhc : VIEWS(S, high) ∧ COACHED(S) ⇒ TYPE(S,Weak)

wvhi : VIEWS(S, high) ∧ INDEPENDENT(S) ⇒ TYPE(S, Strong)

wdi : DAYSONLINE(S, high) ∧ INDEPENDENT(S) ⇒ TYPE(S, Strong)

wctc : CONTRIBUTIONS(S, high) ∧ COACHED(S) ⇒ TYPE(S, Strong)

wcti : CONTRIBUTIONS(S, high) ∧ INDEPENDENT(S) ⇒ TYPE(S,Weak)

Ruleset 6: Student Types, Behavior, and Performance

student, S, is coached or independent.

Furthermore, we introduce these type-specific rules in Ruleset 6. In the first rule, we learn

the association between student strength and performing well on course assessments. The

ASSESSMENTSCORE(S,Ax) of student S on exam Ax is their true score scaled to be between

0 and 1. In the following rules, we model the relationship between types of forum behavior and

student strength, when these relationships differ by student instruction type. As in Ruleset 2,

the rules which concern coached students also have a duplicate for inferring section strength,

following the template above. The final rule in this table is derived from inspecting the data and

observing that for independent students forum contributions were negatively correlated with suc-

cess. A contribution is more general than an answer in that it can include informal conversation.

One possible explanation for this is that independent students who do not have a physical cohort

of peers might be more inclined to use the forum to interact socially.

9.2.4. Collaboration dynamics

Next, we would like to uncover collaborative behavior and utilize it to improve predictions.

Here, we are interested in one form of collaborative behavior, when students work closely to-

gether on the same assignment. We model this behavior with the predicate

WORKINGTOGETHER(Si, Sj), which takes two students as arguments and expresses the extent

to which these students might be inferred to be working together. As we do not know if two

students are working together or not, we model working together behavior as a latent variable

and infer the values to WORKINGTOGETHER(Si, Sj) for all potential Si, Sj pairs. We express

the prior belief that most pairs of students do not work together with the rule in Ruleset 7.

wnwt : ¬WORKINGTOGETHER(Si, Sj)

Ruleset 7: Collaborative Prior

To infer that students may be working together, we inspect forum post content. We define a

post similarity function, POSTSIM(P1, P2), which takes two posts as arguments and returns their

similarity as a value between 0 and 1, where 1 indicates equality. If two students have similar

posts, we predict that they are working together, as shown in the first rule in Ruleset 8.
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wwt : AUTHOR(Si, P1) ∧ AUTHOR(Sj , P2) ∧ SIMPOST(P1, P2) ∧ SAMESECTION(Si, (Sj)

⇒ WORKINGTOGETHER(Si, Sj)

wwta : WORKINGTOGETHER(Sj , Si) ⇒ WORKINGTOGETHER(Si, Sj)

Ruleset 8: Working Together

Now, we express how working together might relate to student and section strength in the

rules in Ruleset 9. We model that a student is in a given section, C, with INSECTION(Si, C).
The first rule in Table 9 expresses that if two students are in a strong section and they are working

together, if one of them is a strong student, the other is likely to be as well. Similarly, if two

students are in the same weak section and they are working together, if one is weak, the other

one likely is as well. The last rule in Ruleset 9 expresses a different dynamic. Here, if two

students are in a weak section and one of them is strong, they may be working with a weaker

student. This rule captures the potential dynamic of answer sharing. Coaches of strong sections

might be better able to prevent such behavior; consequently, we model this dynamic occurring

in weaker sections.

wcs : INSECTION(Si, C) ∧ INSECTION(Sj , C) ∧ SECTIONSTRENGTH(C, Strong)

∧WORKINGTOGETHER(Si, Sj) ∧ TYPE(Si, Strong) ⇒ TYPE(Sj , Strong)

wcw : INSECTION(Si, C) ∧ INSECTION(Sj , C) ∧ SECTIONSTRENGTH(C,Weak)

∧WORKINGTOGETHER(Si, Sj) ∧ TYPE(Si,Weak) ⇒ TYPE(Sj ,Weak)

wcsw : INSECTION(Si, C) ∧ INSECTION(Sj , C) ∧ SECTIONSTRENGTH(C,Weak)

∧WORKINGTOGETHER(Si, Sj) ∧ TYPE(Si, Strong) ⇒ TYPE(Sj ,Weak)

Ruleset 9: Collaboration and Student Types

9.2.5. Predicting post-test performance

Finally, we predict whether a student will pass the post-test with the rules in Ruleset 10, which

connect a students’ strength to passing. As slightly more students fail than pass, we include a

prior with small weight which indicates that most students will not pass (the first rule in Table

10). Together, the rules presented in this section make up the collective probabilistic model

SOCIO-BEHAVIORAL.

wneg : ¬PASS(S)

wsp : TYPE(Si, Strong) ⇒ PASS(Si)

wwp : TYPE(Si,Weak) ⇒ ¬PASS(Si)

Ruleset 10: Predicting Performance

65 Journal of Educational Data Mining, Volume 11, No 3, 2019



10. EMPIRICAL EVALUATION OF PREDICTIVE MODELS

In this section, we present empirical results using the predictive models defined above to predict

post-test performance. For each model, we perform both 10-fold and 3-fold cross validation, in

order to assess how models perform with more (10-fold) or less (3-fold) training data. We filter

our student pool to those who participated in the forums and took the post-test (approximately

16% of all students who completed the post-test). We first present the most informative features

discovered using RFE. We next evaluate the predictive results of the two models. Finally, we

assess the discovered values of the latent section strength and co-working variables.

10.1. INFORMATIVE FEATURES

In total, there are 196 features of student behavior. Broadly these describe forum topics, forum

behavior, course behavior, and classroom/coaching environments. In predicting performance,

we retain only those features which are most informative. Here, we present the most informa-

tive topics mentioned in the student forum. We also outline and comment on critical course

assessments and learning environments. Here, we present those features which are informative

both in the 10-fold and 3-fold data setting. We found all aspects of forum behavior be useful in

predicting performance, and thus do not discuss this feature set here (see Table 1 for a complete

list).

10.1.1. Topics and Performance

Recall that we found 150 topics using LDA. LDA provides a categorical score for a given doc-

ument, describing to what extent this document belongs to each topic. For a student, to find the

extent to which they posted about a given topic, we sum the score provided by LDA for that topic

across each of the student’s posts. For each student this provides a vector of length 150 where

each entry expresses the extent to which this student posted about each topic. When performing

RFE we consider each of the 150 topics as potentially informative. Not only does including

topics in our models of student behavior improve the final predictive model, by inspecting the

topics that students posted about we can gain insights into students’ course experience and the

differences between strong and weak students.

The topics discovered by the topic model fall into four broad categories: help requests,

assignments, course material, and course activities. In Table 6, we present the ten topics which

are most predictive of post-test performance. Each of these appears in the final reduced feature

set, which is visible to the predictive model. The first three topics in the table fall into the help

requests category. They include words such as trouble, help, and fail. Four of the top ten topics

correspond to assignments, with top words that are descriptive of assignments from the course.

For example, in assignment A4 students are asked to write a program to count the number of

hashtags, links, and attributions in a tweet, and in the topic associated with this assignment we

see the words: hashtag, tweet, attributions, mentions, and links. Two topics represent concepts

discussed in the course: object-oriented programming and hash maps. The hash maps topic is

particularly interesting as hash maps are not introduced in the course, but students still use them

in their projects and discuss them on the forum. The other prominent topics relate to course

activities. For example, the activity topic in the table is an activity given to students to print the

location of a vehicle. This is the most elaborate activity that students undertake in the course;

hence it appears in the top predictive topics for predicting post-test performance.
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Table 6: Top predictive topics and the words in these topics.

Topic Label Top Words

Help requests trouble, don’t, perfectly, won, updated

Help requests hope, helps, change, find

Help requests fail, expected, updated, supposed

Assignment content (A4) hashtag, tweet, attributions, mentions, links

Lecture (hashmaps) Map, key, Getvalue, Hashmap, entry

Course Activity (vehicle activity) vehicle, location, backward, forward, GetLocation

Assignment content (A6) ArrayList, words, remove, equals, size

Assignment content (A10) strand, size, TurnOn, green, BurntOut

Assignment content (A14) sort, insertion, swap, insert, algorithm

Lecture (OOP and Methods) object, constructor, methods, parameter, returns

Figure 13 gives the distribution of passed and failed students across the ten most predictive

topics given in Table 6. We observe that passing students post about the course activity on

vehicles more than failing students. Since activities only contribute to a small portion of their

grade, participation in activities is a good measure for students’ level of motivation and learning.

Additionally, we observe that failing students are far more likely to write posts which fall in

the help category. Looking at some of the posts in this category, we find that these posts are often

short and use help words, but do not contain detailed information about the specific assignment

problem in question. This finding suggests that analyzing the posts for linguistic cues is helpful

in understanding students’ metacognition.

Students Who Passed Students Who Failed

Assignment Help

Assignment Help

Assignment Help

Assignment 4

Hashmap

Vehicle Activity

Assignment 6

Assignment 10

Assignment 14

Methods

Figure 13: Commonly discussed topics on the student forum. Topic occurrence in posts authored

by students who pass differs from that in posts authored by students who fail.
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The third important take away from this analysis is that this topic distribution can help dis-

cover patterns in student behavior. For example, passing students post about assignment A10

more than failing students. But, failing students post more about assignment A4. As assign-

ments tend to get harder as the course progresses, the difference in behavior can be attributed to

failing students needing help on the easier assignments, while the savvier students focus on the

harder assignments.

10.2. ASSIGNMENTS AND PERFORMANCE

Here, we describe the most predictive assignments that we use in the two models. We find that

assignments A4, A8, A9, and A10 are the most predictive assignments in the 10-fold setting.

These assignments are on core concepts and hence may be the most critical assignments in the

course. This observation is bolstered by the fact that these assignments are referenced in the

forums more than other assignments. Two of these assignments feature in the top ten predictive

topics given in Table 6. Only A10 is also selected in the 3-fold setting. This assignment is the

first which covers inheritance, a topic which many students struggle with and which is heavily

covered on the AP exam. This stresses the importance of assessing students’ understanding of

inheritance early and providing additional resources for those students.

10.3. LEARNING ENVIRONMENT AND PERFORMANCE

Whether or not a student was coached is an informative feature. However, there can be differ-

ences in the skill levels of coaches as they all have different backgrounds in computer science

and different teaching methods. We found that the number of times a coach answers a question

on the coach forum, the days they spend online, and the size of their classroom were also useful

in predicting the scores of coached students. The most decisive feature was the number of times

a coach answers a question. One possible explanation for this is that these answers can approx-

imate a coach’s prior knowledge or involvement. Evaluating both students’ and coaches’ prior

knowledge can provide more insight.

Additionally, we found that coaches with small sections were more likely to produce strong

students. Yet, there were exceptions to this trend where a few coaches with large sections pro-

duced strong students. This might be an artifice of this dataset as there were a few coaches

teaching large sections who had prior experience teaching computer science. There are many

open questions about the relationship between prior experience and teaching ability, and further-

more, between ability and ideal section size.

10.4. PREDICTIVE RESULTS

Here we present the precision, recall, and F-measure of the two predictive models, the SVM

classifier and the collaborative model SOCIO-BEHAVIORAL. We show the predictive results in

Table 7. We see that SOCIO-BEHAVIORAL outperforms the SVM overall, and for each student

group as well.

We also see that SOCIO-BEHAVIORAL is more robust to the training/testing environment.

For example, moving from the 10-Fold to the 3-Fold setting, where this is less training data and

more testing data per fold, we see the performance of the SVM drop by 4.5%. However, for

SOCIO-BEHAVIORAL performance only drops by .49%.

Both models are better able to predict the performance of coached rather than independent

students. This is most likely due to the increased heterogeneity of the cohort of independent
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Table 7: Performance of SOCIO-BEHAVIORAL and SVM in inferring post-test performance. Sig-

nificant improvements (p< 0.05) of one model over another within the same train/test split envi-

ronment are shown in bold (e.g., SOCIO-BEHAVIORAL relative to SVM in the 3-Fold condition).

3-Fold 10-Fold

Precision Recall F-Measure Precision Recall F-Measure

All

SVM 77.3 75.9 76.6 72.3 88.1 80.2

SOCIO-BEHAVIORAL 82.0 82.4 82.2 75.6 89.6 82.6

Coached

Precision Recall F-Measure Precision Recall F-Measure

SVM 72.6 74.2 73.4 68.0 89.6 78.8

SOCIO-BEHAVIORAL 78.4 80.5 79.5 72.2 90.3 81.2

Independent

Precision Recall F-Measure Precision Recall F-Measure

SVM 86.0 79.0 82.5 83.8 84.9 84.5

SOCIO-BEHAVIORAL 88.6 85.7 87.1 84.4 87.6 86.0

students. However, as these students might not have classroom support, improving the model to

better understand their needs is important future work.

10.5. INFERRING CLASS STRENGTH WITH SOCIO-BEHAVIORAL

In addition to inferring if students will pass the post-test, in SOCIO-BEHAVIORAL we also infer

the latent strength of each class or section with a coach. Here, we would like to evaluate how well

this model discerns section strength. While true section strength is an unobserved variable, here

we introduce a proxy score to evaluate SOCIO-BEHAVIORAL. For each class we calculate the

percentage of students who pass the post-test. We introduce a proxy score SECTIONSTRENGTH-

PROXY(section), which is 1 if a section has a pass rate greater than 50% and 0 otherwise. To

evaluate the predicted section strengths against SECTIONSTRENGTHPROXY(section), we round

our predicted strength values with a .5 threshold. These results are shown in Table 8.

Table 8: Performance of SOCIO-BEHAVIORAL in inferring section strength.

Precision Recall F-Measure

3-Fold 67.9 1.00 80.9

10-Fold 55.9 82.6 66.7

In Table 8, we compare the 3-Fold and 10-Fold versions of SOCIO-BEHAVIORAL. In this

case, we see that it is more difficult to infer section strength in the 10-Fold case, where each

fold has fewer students in the same class. In both cases, recall is much higher than precision,

and precision can be further optimized. In both cases, the models were trained to optimize

their ability to predict students’ scores, not to infer section strength. Directly optimizing for

this prediction would most likely lead to improved performance. Additionally, gathering more
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information about coaches teaching styles would better allow us to understand which styles are

most successful.

A section’s strength is most likely a combination of the abilities and achievements of its con-

stituent students and of the coach leading the section. Coaches can influence students’ learning,

and determining what aspects of coaching are most effective can have a large impact on learning.

Here, we model several potential indicators of a coach’s strength and show that these offer rea-

sonable performance. While these indicators might help course designers in choosing coaches

to approach with extra resources, they are not informative enough to lend insight into successful

classroom strategies. For example, we do not know how often strong instructors decided to meet

with their students, nor do we know their prior knowledge.

10.6. COLLABORATION DYNAMICS

Students have multiple opportunities to collaborate in this course. Coached students might meet

other students both in classroom settings and outside of them. Students can seek help on the

online student forum and often receive answers from their peers. As collaborations have been

shown to enhance learning in some settings, here we explore the potential effect of working

together.

Consider a group of students who are seeking to solve the same assignment. We consider

these students as working together if they are actively collaborating to reach the answer. They

might share portions or all of their solutions with each other. They might turn to others with

whom they are working when they are stuck. In our online setting we have no ground truth

labels of this working together dynamic. Instead, we model it as a latent variable and infer the

extent to which two students might be working together with the model described in Section 9.

Our primary evidence of students working together is their forum posts. A potential sign of

working together typically observed by course instructors is the following. A student will ask

for help on the course forum, and in a short window of time after this student posts a question,

another student will post a question with highly similar code to the first post. Course instructors

describe that students strategize that by posting the same question by different authors it might

be answered more quickly. Many MOOCs rely on peers to address each other’s questions. This

MOOC hires instructors to respond to every post. Thus, while in many courses over-posting

might result in less visibility for questions, in this course it is not a concern as every question is

guaranteed to be answered within 24 hours. Thus, here we look for posts with high similarity as

an indicator of co-working behavior.

In inferring these collaboration dynamics, we introduced a post similarity function. Re-

call we are interested in posts that suggest that students are working on the same assignment

together. Following the observation that students will post highly similar questions about the

same question we arrive at a set of criteria for assessing post similarity. First, we only consider

question posts which are the first posts in a thread. These posts often contain the code the student

will submit for the assignment. Next, we only consider the similarity between posts where the

authors are in the same section. Additionally, these questions must be posted in a narrow time-

frame, which suggests posting coordination. Finally, for two messages to be similar they must

have high text similarity. This provides a very specific indicator of students working together,

which is meant to capture the observed phenomenon of students working on one assignment and

independently posting the code which they wrote together. Text similarity is calculated as the

cosine similarity between term frequency-inverse document frequency (TF-IDF; Jurafsky and
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Table 9: Number of interactions between students of different types. Here, we use students’

post-test scores to label them as being strong or weak and assign students to be working together

according to the output of SOCIO-BEHAVIORAL.

Weak Strong

Weak 9 5

Strong 5 5

Martin, 2000) vectors. In constructing the TF-IDF vectors we consider the entire corpus.

Next, we inspect which kinds of students are predicted to work together by SOCIO-

BEHAVIORAL. We consider any pair of students (Si, Sj) to be working together, if the model

assigned a truth value of at least 0.5, to WORKINGTOGETHER(Si, Sj). To inspect the types of

students involved in an interaction we use post-test performance to label students as Strong or

Weak, where Strong are those who pass the AP and Weak students are those who do not. In

total, we find 19 pairs of students out of 119 potential pairs. Of these, the largest interactions are

between weak students.

The absolute numbers here are very small. We do see some strong-weak interactions are

inferred. In the inferred interactions between strong and weak students, the weak students are

all unexpected low learners with high course scores and low post-test scores. Thus, these in-

teractions might suggest that the students are receiving help in submitting assignments, which

might hamper their ability to properly internalize the course material. Furthermore, of the weak-

weak interactions the majority are also between unexpected low learners. However, we also see

interactions between strong students. This is a positive sign that students can collaborate and

assist each other.

10.7. PREDICTING UNEXPECTED STUDENT TYPES

In Section 7, we saw two groups of students whose course performance did not match their

post-test performance. Here, we inspect our ability to predict the performance of these groups.

In Table 10 we analyze the accuracy of each model in predicting post-test performance for these

groups of students.

In Table 10, we see that it is very difficult to predict the performance of unexpected stu-

dent types. The behavior of unexpected low learners matches that of strong students, yet these

students fail the post-test, while unexpected high students do not participate in the course, yet

obtain high scores. By incorporating both student interactions and encoding relationships be-

Table 10: Prediction accuracy for unexpected student types. Significant improvements over com-

petitors are shown in bold (p < .05).

Accuracy

SVM
SOCIO-

BEHAVIORAL

All 73.7 76.8

Unexpected low learners 52.3 54.1

Unexpected high learners 37.5 52.7

71 Journal of Educational Data Mining, Volume 11, No 3, 2019



tween student characteristics and success, SOCIO-BEHAVIORAL is able to outperform the SVM

model, though there is much room for improvement.

A question regarding unexpected low learners is whether they might be receiving help from

their classmates. To further investigate this, we look at the student co-working pairs discovered

by SOCIO-BEHAVIORAL. In all of the weak-strong interactions, we see that the weak students

are unexpected low learners. This supports the theory that these students are working with strong

students who may be over-helping them. Furthermore, in the weak-weak interactions we see that

the majority of students (14/18) are unexpected low learners. Thus, weak students may also be

depending on each other to the detriment of their learning.

11. DISCUSSION

We employed both 3-Fold and 10-Fold cross-validation for predicting performance. With three

folds, there is less training and more testing data than in the 10-Fold case. Thus, the F-Measure is

expected to decrease in the 3-Fold setting. This is what we saw in the SVM, with an F-Measure

of 80.2 in the 10-Fold setting and 76.6 in the 3-Fold setting (a decrease of 4.5%). However, for

SOCIO-BEHAVIORAL the decrease was much lower, just 0.49%.

Next, we investigated whether we might improve predictions by modeling collaboration

dynamics. Indeed, this was the case. In the 3-Fold setting, where there are more instances of

classroom structure in the test folds, we saw improvements in F-Measure over the SVM model of

7.4% (overall), 8.3% (coached students), and 5.7% (independent students). As the collaborative

model can take advantage of classroom information and interactions between coached students,

we expect to see the largest increase with regards to coached students.

In this collaborative model, we are also able to incorporate inferred section strength and

pairs of students inferred to be working on assignments together. We saw that the inferred strong

sections had higher numbers of passing students than the inferred weak sections. Additionally,

we saw that the most common co-working interaction was between weak students and that

the majority of all interactions involved one unexpected low learner. While collaborations can

be beneficial for learning, high school students may need more guidance in forming successful

teams. However, we only uncovered a small total number of such interactions. To better measure

the effect of collaboration, it would be useful to observe changes in students’ strength after

working together. For example, do we see stronger students aiding weaker students to the extent

that they can also pass the post-test? Our inferred co-working pairs are a static snapshot of

evolving relationships. In future work, we will take temporal aspects into account when studying

these effects.

11.1. LIMITATIONS

In this work, we have analyzed observational data to discover relationships between aspects of

a high-school MOOC and post-test performance. We then used many of these relationships to

build several predictive models of student success. This work could be strengthened by con-

ducting explicit randomized trials to isolate specific aspects of learning, for example the effect

of certain coaching strategies. We view our exploratory data analysis as work that highlights

areas for further study. A central contribution of our work is the use of collective inference

to strengthen predictive performance. As the relationships of interest to us are unobserved we

introduce a latent model which can both infer these crucial dynamics and use them in inference.
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Additional latent-variable approaches could be informative in this setting as well. However,

PSL offers a scalable and expressive appoach. Bayesian networks (Friedman et al., 1999) could

be relevant, yet they require different assumptions to template than PSL, which is conveniently

templated with logical rules. Bayesian Knowledge Tracing (Corbett and Anderson, 1994) is a

popular modeling framework for knowledge acquisition, but the standard form does not apply

to our goal of predicting post-test performance from heterogenous observations of student be-

havior. Finally, Markov logic networks (Richardson and Domingos, 2006) also employ logic

to template a different class of Markov random fields, however this framework does not admit

reasoning over continuous latent variables, as does PSL.

We show that by modeling socio-behavioral dynamics in a data-driven manner, we can

achieve better performance than when such dynamics are ignored. However, while we can

clearly say that section strength is an indicator of student strength, much more work is needed to

understand the circumstances which influence this relationship. While we can study the online

characteristics of different coaches, such as the number of times they answer a question on the

coaches’ forum, we do not have access to their offline behavior.

A central hindrance is our inability to measure all of the aspects of the educational envi-

ronment that can contribute to student learning. For example, we have an incomplete idea of

the learning environments provided by each coach. Additionally, we do not have access to the

complete social network of this high-school MOOC and rely on partial measurements to inform

our model of collaboration. Finally, there are many latent constructs that can inform the study

of learning. Here, we explore the effect of only some of the many potential latent constructs.

While in future work we hope to gather more data in order to further our understanding of stu-

dent learning in this MOOC environment, this work presents several contributions designed to

confront these limitations.

Expanding upon this, a further limitation with this work is that we lack details about each

coach’s strategies. Understanding the pedagogical tactics of each coach will better allow us to

model section strength. For example, it would be useful to know coaches’ prior knowledge

and subject competency, how often they meet with students, how they use the forum resources,

and what kind of collaborative dynamics they foster. As a first step in this direction we have

modeled latent section strength. This latent variable is designed to explain many of the attributes

of coaches which are in our case unobserved. In future work we hope to combine enriched

observational data with this latent-variable model to better understand the influence of coaching

on student learning.

Collaboration can be an essential aspect of student learning. As we have observed that stu-

dents often work on the same assignment together, often simultaneously posting the same code,

we included this dynamic as a possible form of student interaction in our proposed model. This

is only one potential form of student interaction. While there are many other interactions to

explore, this one was deemed important in the context of this MOOC upon consultation with

course instructors. Obtaining observations outside of the forum would allow us to better ex-

amine a fuller range of collaboration dynamics. For example, observing which students work

together in the classroom could be more informative of collaboration. Modeling social ties such

as friendship would also be very beneficial. Finally, with more multi-modal traces of student

behavior, we could better differentiate collaboration dynamics. In our case, being able to differ-

entiate between the dynamics of sharing information (such as assessment answers or code snip-

pets) and collaboratively improving understanding (such as discussing course concepts) would

allow us to better understand student learning in this environment.
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In this work, we use final post-test performance as our guiding metric. A limitation of this

metric is that it does not capture changes in course mastery. Another potential metric of learning

would be improvement on a post-test from a pre-test. Furthermore, our performance metric does

fully capture other aspects of how students participate in online courses. Finally, a limitation

with this metric is that it reduces the number of students whose course mastery can be analyzed,

as not all students participated in the post-test. A key contribution our work is to introduce a

flexible modeling framework for this domain which can readily incorporate multiple measures

of student behavior. In the future, we hope to also expand our metrics of learning to incorporate

these diverse behaviors. For example, a more holistic measure of how students benefit from

MOOCs could include their study patterns, social behavior, and grasp of critical concepts.

Here we model student strength from observed individual characteristics and behaviors. A

limitation of this modeling is that it does not model psychological traits, which can influence stu-

dent behavior in online environments, such as motivation and conscientiousness. In future work

we plan to survey students with respect to their motivational styles and other psychological con-

structs. A benefit of our model is that one can template interpretable hypotheses about how

unobserved factors might be influencing student learning. These hypotheses can lend strength

to even limited data. Additionally, we expect that models of student learning will continuously

evolve. Here, we have presented a particular model of student learning within a general mod-

eling framework. We foresee that the specifics of this model will evolve with the science of

learning.

12. CONCLUSION

Our work shows that MOOCs are a viable option for high school students. Forty-seven percent

of students who took the post-test passed it. Of these students, approximately 29% were, to the

best of our knowledge, self-directed. We found that post-test performance was correlated with

course performance, such that students who earned a high course score also earned a high post-

test score. While we can say that MOOCs work for some high school students, the particularities

of this group must be understood. Towards this end, we have characterized high and low learners

by their course and forum behavior, as well as by the topics that they post about.

Our collective socio-behavioral model incorporates findings from the data to predict post-test

performance. Critically, this model uses latent variables to uncover hidden structure in this do-

main. By modeling latent collaborative dynamics and inferring post-test scores collectively, we

were better able to predict students’ performance. We also improve our predictions of coached

students’ performance by inferring latent section strength.

This collective probabilistic approach is very general. Currently, we incorporate relation-

ships between student and coach behavior, and student performance and show the effectiveness

of this approach. In future work, it may be advantageous to encode additional contextual knowl-

edge about coaches’ experience, styles, and knowledge. Additionally, we could adapt this model

to include knowledge of other internal student states, such as evolving course comprehension

and motivation. Finally, this modeling approach can be used to design course interventions. If

we can predict performance early in a student’s experience, we may be able to personalize inter-

ventions to the needs of the student. Strong students might need more challenging, conceptual

exercises, while other students might benefit from review or focused instructor attention. Online

education introduces the opportunity to provide personalized learning experiences at scale. We

view this work as a step in that direction.
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